±Û¸ñ·Ï¡¡ SeeHint.com  No: 12565

  PC¹öÀü¡¡


´Ü¹éÁú ¡í ´Ü¹éÁúÁ¾·ù ¡í Äݶó°Õ

Äݶó°ÕÀÇ ÇÕ¼º   

Äݶó°Õ: ¼¼Æ÷°ñ°Ý, ECM
- ÁõÁ¡(´Ü¼ø)´Ù´ç·ù , º¹ÇÕ´Ù´ç·ù
- ¼¼Æ÷´Â Fiber µ¢¾î¸®´Ù ,
- ¿¤¶ó½ºÆ¾ elastin,  Proteoglycan

Äݶó°Õ Á¶¼º ¹× ÇÕ¼º°úÁ¤
- Äݶó°Õ ¿ªÇÒ : ¼¼Æ÷°ñ°Ý
- Äݶó°Õ ¿ªÇÒ : ¼¼Æ÷ »ý¸íÀ¯Áö & ¼¼Æ÷ÀÚ»ì
- Äݶó°Õ Á¶¼º ¹× ÇÕ¼º°úÁ¤
- Äݶó°Õ : °áÇÕÁ¶Á÷ Áúȯ
- Äݶó°Õ -> Á©¶óƾ
- ºñŸ¹Î C ¿ªÇÒ

* Äݶó°Õ ±¸¼º ¾Æ¹Ì³ë»ê : glycine(27£¥), proline(15£¥), glutamic acid(11£¥), alanin(10£¥), aginine(8£¥).
* Elastin ±¸¼º ¾Æ¹Ì³ë»ê : glycine(27£¥), alanine(21£¥), valine(18£¥), proline(14£¥), leucine(9£¥)  

ºñÇʼö ¾Æ¹Ì³ë»êÀ¸·Î »ý¼º
1. ±Û¸®½Å(glycine) : 1/3
2. ÇÁ·Ñ¸° + ÇÏÀ̵å·Ï½ÃÇÁ·Ñ¸° = 30%,
    glutamic acid ¡æ ÇÁ·Ñ¸°(proline)  ¡æ Hydroxyproline (Hyp)
3. ¶óÀ̽Š+ ÇÏÀ̵å·Ï½Ã¶óÀ̽Å
     ¶óÀ̽Å(lysine) ¡æ Hydroxylysine (Hyl)

ÇÁ·Ñ¸°(proline)°ú ¶óÀ̽Å(lysine)¿¡ -OH¸¦ ºÙÀÌ´Â °úÁ¤¿¡¼­ ºñŸ¹Î C°¡ ÇÊ¿äÇÏ´Ù.






3°³ÀÇ Æú¸®¼„ŸÀ̵尡 ³ª¼±Çü ±¸Á¶·Î ²¿À̱â ÀüÀÇ »óŸ¦ ÇÁ·ÎÄݶó°Õ(procollagen)À̶ó ºÎ¸£°í, ÀÌ°ÍÀÌ Äݶó°ÕÀ¸·Î ÀüȯµÈ´Ù. Äݶó°ÕÀÌ ¸¸µé¾îÁö´Â 5´Ü°èÀÇ °¢ ´Ü°è¸¶´Ù ºñŸ¹ÎC°¡ ¿ä±¸µÈ´Ù. ¶óÀ̽Å(lysine)°ú ÇÁ·Ñ¸°(proline)Àº ¡®¼ö»êÈ­¹ÝÀÀ¡¯¿¡ ÀÇÇØ ¼ö»êÈ­¶óÀ̽Űú ¼ö»êÈ­ÇÁ·Ñ¸°(hydroxylysine, hydroxyproline)À¸·Î ¹Ù²ï´Ù. 3°³ÀÇ Æú¸®¼„ŸÀ̵å üÀÎ(triple helix)´Â ¼ö»êÈ­µÈ ¶óÀ̽Űú ÇÁ·Ñ¸°À» ÅëÇØ ¼­·Î ±³Â÷°áÇÕ(cross-link)µÇ¸é¼­ Æ°Æ°ÇÑ Äݶó°ÕÀÌ ¸¸µé¾îÁø´Ù.



5´Ü°è¸¦ ÅëÇØ ¸¸µé¾îÁö´Â Äݶó°Õ
Äݶó°ÕÀ» ±¸¼ºÇÏ´Â Æú¸®¼„ŸÀ̵å üÀÎÀÌ ´Ù¸¥ ´Ü¹éÁú°ú È®¿¬È÷ ´Ù¸¥ ±¸º°µÇ´Â °ÍÀº, ÀÌ Ã¼ÀÎÀÌ ±Û¸®½Å°ú ÇÁ·Ñ¸°ÀÇ µÎ ¾Æ¹Ì³ë»ê¸¸À¸·Î ¼­·Î ±³Â÷Çϸ鼭 Áß°£¿¡ °£°£ÀÌ ¶óÀ̽Šµî ´Ù¸¥ ¾Æ¹Ì³ë»êÀÌ ±¸µÎÁ¡Ã³·³ ³¢¿© ÀÖ´Ù´Â Á¡ÀÌ´Ù. Äݶó°ÕÀº 3Â÷¿ø ±¸Á¶ÀÇ °Å´ëºÐÀÚÀε¥, 3°³ÀÇ Æú¸®¼„ŸÀ̵å üÀÎÀÌ Èí»çÈ÷ ·Î¿ìÇÁÀÇ ²¿ÀÎ ²ö(strand)ó·³ ³ª¼±Çü(helix)±¸Á¶·Î ¼­·Î ²¿¿© Äݶó°ÕÀ̶ó´Â ¼¶À¯(fibril)´Ü¹éÁúÀÌ µÈ´Ù.
 
 


Äݶó°ÕÀº ±×´ë·Î Èí¼öµÉ ¼ö°¡ ¾ø´Ù. Äݶó°ÕÀº ¾Æ¹Ì³ë»êÀ¸·Î Àß°Ô ÂÉ°³Áø ÈÄ¿¡¸¸ Èí¼öµÉ ¼ö ÀÖ´Ù. ÀÌ ¸»Àº Äݶó°ÕÀ» ÃæºÐÇÏ°Ô ±×¸®°í Æ°Æ°ÇÏ°Ô ¸¸µé±â À§Çؼ­´Â, ÀÎü°¡ Äݶó°ÕÀ» Àß ¸¸µé ¼ö ÀÖµµ·Ï ¿ø·á¿Í ÃËÁø¹°Áú(Ã˸Å, È¿¼Ò)À» ¿øÈ°ÇÏ°Ô °ø±ÞÇØ¾ß ÇÑ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù.(Äݶó°ÕÀ» Á÷Á¢ ¸Ô´Â °ÍÀº º°´Ù¸¥ Àǹ̰¡ ¾ø´Ù)

OH±â¸¦ ġȯÇÏ´Â ÀÌÀ¯ : Hydrogen bond

- Hydrogen bond : »ý¸íÇö»ó¿¡¼­ °¡Àå Áß¿äÇÑ °áÇÕÀÌ´Ù
°¡Àå Æò¹üÇÑ ¾Æ¹Ì³ë»êÀ» ÀÌ¿ë :  ¶óÀ̽Å, ÇÁ·Ñ¸°
-OH¸¦ ºÙÀÌ¸é °­·ÂÇÑ Hydrogen bond·Î ´Ü´ÜÇÑ ±¸Á¶Ã¼¸¦ ¸¸µé¼ö ÀÖ´Ù

 


 


Self-assembly into Supramolecular Structure ü¿Â¿¡¼­ ÀÚ¹ßÀûÀÎ Á¶¸³

The collagen triple helix is essentially a one-dimensional molecule, with its near-constant axial separ between amino acid residues throughout the triple-helical domain. This has permitted a direct correla structural data obtained by electron microscopy with chemical sequence data. Lateral association of 1 collagenous triple-helical domains, to form fibrils, is a common feature of the collagen family. Fibril self-assemble spontaneously from solutions of extracted type I collagen when the pH, temperature, a strength are adjusted to physiological values. This lateral association appears to be promoted by elev temperature, suggesting that hydrophobic interactions are the principal driving force (Fig. 6). Fibri formation is controlled to a large extent by the amino acid sequence of the collagen and, in particular distribution of polar and hydrophobic residues that are exposed on the surface of the triple-helical do Hydroxylysine and glycosylated hydroxylysine residues might be a most potent candidate involved i limiting the lateral growth of the collagenous domains. The residues on the surface of collagen triple may well be bulky enough to cause steric hindrance in the lateral association of the triple-helical dom (Fig. 15, see later). The situation would be particularly pronounced in the triple-helical domains of ty and type IV collagens, which respectively contain more than 20 and 50 glycosylated hydroxylysine r in a single polypeptide.



Figure 6. Lateral association of triple-helical domains. Triple-helical domain is highly hydrated at 4¡ÆC. At physiological temperature such as 37¡ÆC, water molecules on the hydrophobic domains will be dehydrated. Collagen molecules accomp lateral association of the triple-helical domains through the exposed hydrophobic regions.
Lateral association of triple-helical domains. Triple-helical domain is highly hydrated at 4¡ÆC. At physiological temperature such as 37¡ÆC, water molecules on the hydrophobic domains will be dehydrated. Collagen molecules accomp lateral association of the triple-helical domains through the exposed hydrophobic regions.
 
 


Äݶó°ÕÀÇ »ýÇÕ¼º