¾Æ¹Ì³ë»ê : Cysteine ½Ã½ºÅ×ÀÎ


´Ü¹éÁú ¡í ¾Æ¹Ì³ë»ê

Cysteine ½Ã½ºÅ×ÀÎ

ȲÇÔÀ¯
- ¸ÞÄ¡¿À´Ñ methionine
- Cysteine --> Ÿ¿ì¸°
- Glutatione : cysteine+glutamate+glycine
- ¾ËÆÄ ¸®Æ÷»ê

 

¸Ó¸®ÅÐ ¡¤»Ô µîÀÇ ´Ü¹éÁúÀÇ ¼ººÐÀ¸·Î Äɶóƾ¿¡´Â 10% ÀÌ»ó ÇÔÀ¯
°íµî½Ä¹°  È¿¸ð¿¡´Â NADH(´ÏÄÚƾ»ê¾Æ ¹Ìµå¾Æµ¥´Ñµð´ºÅ¬·¹¿ÀƼµåÀλê)¿¡ ÀÇÇØ   ½Ã½ºÆ¾ÀÌ ½Ã½ºÅ×ÀÎÀ¸·Î µÇ´Â ȯ¿ø°è°¡ Á¸Àç
Æú¸®ÆéƼµå »ç½½ÀÇ °íÂ÷±¸Á¶ÀÇ °áÁ¤°ú È¿¼Ò, È£¸£¸ó È°¼º¿¡ ½Ã½ºÆ¾ÀÌ Áß¿äÇÑ ¿ªÇÒ

 

½Ã½ºÅ×ÀΠƼ¿Ã ±×·ìÀº »êȭȯ¿ø·ÂÀÌ ÀÖ°í ¹ÝÀÀ¼ºÀÌ ³ô¾Æ ¼ö¸¹Àº »ý¹°ÇÐÀûÀÎ ±â´ÉÀÌ ÀÖ´Ù. Ç×»êÈ­Á¦ÀÎ ±Û·çŸġ¿ÂÀÇ ÀϺηΠÀÛµ¿ÇÑ´Ù. ±Û·çŸġ¿ÂÀº ½Ã½ºÅ×ÀÎ, ±Û¸®½Å, ±Û·çŽ»êÀÌ °áÇÕÇÏ¿© ¸¸µé¾îÁø ºÐÀÚÀε¥ ±Û·çŽ»ê°ú ±Û¸®½ÅÀº ½ÄÇ°¿¡ ÈçÇÏÁö¸¸ ½Ã½ºÅ×ÀÎÀº Èñ¼ÒÇÑ ¾Æ¹Ì³ë»êÀÌ´Ù ÀÖ´Ù. ö-Ȳ Ŭ·¯½ºÅÍÀÇ Àü±¸Ã¼·Î Àΰ£ÀÇ ½ÅÁø ´ë»ç¿¡¼­ Ȳȭ¹°ÀÇ Áß¿äÇÑ ¿øõÀÌ´Ù
Ƽ¿Ã ±×·ì ´öºÐ¿¡ ´Ù¸¥ ±Ý¼Ó°úµµ °áÇÕÇÏ´Â ´É·Âµµ °­ÇØ È¿¼Ò Áß¿¡¼­ ½Ã½ºÅ×ÀÎÀ» ÀÌ¿ëÇÏ¿© ¾Æ¿¬, ±¸¸®, ö°ú °áÇÕÇÑ °ÍÀÌ ÀÖ´Ù. Á߱ݼӰúµµ °áÇÕ·ÂÀÌ °­ÇØ ½Ã½ºÅ×ÀÎÀ» ÇÔÀ¯ ÇÑ ´Ü¹éÁúÀº ¼öÀº, ³³ ¹× Ä«µå¹Å°úµµ ´Ü´ÜÈ÷ °áÇÕÇÏ´Â ¹®Á¦°¡ ÀÖ´Ù.
½Ã½ºÅ×ÀÎÀº º¸Åë Ä£¼ö¼º ¾Æ¹Ì³ë»êÀ¸·Î °£ÁֵǾî¿Ô´Ù. ±×·¯³ª Ä£¼ö¼ºÀº ±×¸® Å©Áö ¾Ê¾Æ¼­ ºñ±Ø¼º ¾Æ¹Ì³ë»ê°úµµ Àß ¾î¿ï¸°´Ù. ½Ã½ºÅ×ÀÎ ÀܱâÀÇ ¼Ò¼ö¼º °æÇâÀº ¸ÞƼ¿À´Ñ°ú Ƽ·Î½Å°ú µ¿ÀÏÇϸç, ¼¼¸° ¹× Æ®·¹¿À´Ñ°ú °°Àº ¾Ë·ÁÁø ±Ø¼º ¾Æ¹Ì³ë»êº¸´Ù ÈξÀ Å©´Ù. ÀÌ·± ¼ºÁúÀÌ ´Ü¹éÁú ³»¿¡¼­ µð¼³ÆÄÀÌµå °áÇÕÀ» ¿ëÀÌÇÏ°Ô Çϴµ¥ ¿µÇâÀ» ÁØ´Ù.


½Ã½ºÅ×ÀÎÀÇ µð¼³ÆÄÀÌµå °áÇÕÀº ´Ü¹éÁúÀÇ Á¢Èû°ú ¾ÈÁ¤¼º¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù. ÇÏÁö¸¸ ´ëºÎºÐÀÇ ¼¼Æ÷ ¾È¿¡¼­´Â ȯ¿ø ȯ°æÀ̱⠶§¹®¿¡ µð¼³ÆÄÀÌµå °áÇÕÀÌ ¼¼Æ÷Áú¿¡¼­ ºÒ¾ÈÁ¤ÇÏ´Ù. ±×¸®°í ´Ù¸¥ Ȳ ÇÔÀ¯ ¾Æ¹Ì³ë»êÀÎ ¸ÞƼ¿À´ÑÀº µð¼³ÆÄÀÌµå °áÇÕÀ» Çü¼º ÇÒ ¼ö ¾ø´Ù. µð¼³ÆÄÀÌµå °áÇÕ¿¡ ÀÇÇÑ ´Ü¹éÁúÀ» °¡±³ °áÇÕÀº ´Ü¹éÁúÀÇ °­µµ¸¦ Áõ°¡½ÃÅ°°í ´Ü¹éÁú ºÐÇØ ÀúÇ×¼ºÀ» ºÎ¿©ÇÏ¿© ´Ü¹éÁúÀÇ 3Â÷ ±¸Á¶¸¦ ÁöÁöÇÑ´Ù. Àν¶¸°Àº 2 °³ÀÇ ºÐ¸®µÈ ÆéŸÀÌµå »ç½½ÀÌ µð¼³ÆÄÀÌµå °áÇÕ¿¡ ÀÇÇØ ¿¬°áµÈ °ÍÀÌ´Ù. ÀÌ·± Ư¼º ¶§¹®¿¡ ¹Ì¿ë(ÆĸÓ)¿¡µµ ¾²ÀδÙ. ¸Ó¸®Ä«¶ôÀº ´Ü¹éÁúÀÌ°í, ´Ü¹éÁú ³»¿¡ ½Ã½ºÅ×Àο¡ ȯ¿øÁ¦¸¦ ó¸®ÇÏ¸é ½Ã½ºÅ×ÀÎ °áÇÕÀÌ Ç®·Á ¸Ó¸®Ä«¶ôÀÌ Ç®¸®°í, ¸ð¾çÀ» Çü¼ºÇÑ »óÅ¿¡¼­ µð¼³ÆÄÀÌµå °áÇÕÀ» ½ÃÅ°¸é ¸ð¾çÀÌ ±×´ë·Î À¯ÁöµÈ´Ù.

½Ã½ºÅ×ÀÎÀÇ °¡Àå Å« ÀÀ¿ë ºÐ¾ß Áß Çϳª´Â dz¹Ì(¹ÝÀÀÇâ)ÀÇ »ý»êÀÌ´Ù. ½Ã½ºÅ×Àΰú ȯ¿ø´çÀÌ Maillard ¹ÝÀÀÀ» Çϸé À°·ùÀÇ ¸ÀÀ» ³½´Ù. ¶Ç Á¦»§¿¡ °¡°ø º¸Á¶Á¦·Î »ç¿ëÇÏ¸é ¹°¼ºÀÇ °³¼±°ú dz¹ÌÀÇ Çâ»ó¿¡ µµ¿òÀÌ µÈ´Ù.


½Ã½ºÅ×ÀÎÀº °£ ¼Õ»óÀ̳ª ¼÷Ãë µî ¾ËÄÚ¿ÃÀÇ ºÎÀÛ¿ë¿¡ ´ëÇÑ ¿¹¹æ ¶Ç´Â Çص¶Á¦·Î Á¦¾ÈµÇ±âµµ ÇÑ´Ù. ½Ã½ºÅ×ÀÎÀÌ ¾Æ¼¼Æ®¾Ëµ¥È÷µå¸¦ ºñ±³Àû ¹«ÇØÇÑ ¾Æ¼¼Æ®»êÀ¸·Î ¹Ù²Ù´Â ´ë»ç È°µ¿À» µµ¿î´Ù. ½Ã½ºÅ×ÀÎÀº ÀǾàÇ°¿¡¼­´Â ¾Æ¹Ì³ë»ê¼ö¾×À̳ª °£Áúȯġ·áÁ¦ ¿Ü¿¡ °æ±¸, °æÀ念¾çÁ¦¿¡ ÀÌ¿ëµÇ°í ÀÖ´Ù. ¶Ç, ü³»¿¡¼­ ´ë»çµÇ¸é À¯È²À» ¹ß»ýÇÏ¿© ´Ù¸¥ ¹°Áú°ú ¹ÝÀÀÇÔÀ¸·Î½á Çص¶ÀÛ¿ëÀÌ ÀÖ¾î À¯ÇرݼÓÀ̳ª Èí¿¬, À½ÁÖ µîÀ¸·Î »ý±â´Â È°¼º»ê¼Ò³ª ¹æ»ç¼± µîÀÇ À§ÇطκÎÅÍ ½Åü¸¦ ÁöÅ°±â À§Çؼ­ Çص¶Á¦³ª Á¶Ç÷Á¦¿¡ »ç¿ëµÇ°í ÀÖ´Ù.
Á¶Á÷°øÇÐÀ̳ª ¹ÙÀÌ¿ÀÅ×Å©³î·ÎÁöºÐ¾ß¿¡¼­´Â ÀÎÇÁ¶õÆ® µîÀÇ »ýüÀç·á·Î ÀÀ¿ëÇϱâ À§ÇØ Æ¼¿Ã±âÀÇ ºÎ°¡ µî¿¡ µû¸¥ Äݶó°ÕÀÇ °³¼±À» ÇÏ¿© ½Ã½ºÆ¾°áÇÕÀ» ÅëÇؼ­ °¡±³ °¡´ÉÇÑ Äݶó°ÕÀ¯µµÃ¼°¡ °³¹ßµÇ°í ÀÖ´Ù.  
½Ã½ºÆ¾Àº ü³»¿¡¼­´Â Çʼö¾Æ¹Ì³ë»êÀÎ ¸ÞÄ¡¿À´ÑÀ¸·ÎºÎÅÍ ÇÕ¼ºµÇÁö¸¸, ü³»ÀÇ ¸ÞÄ¡¿À´ÑÀÌ °áÇÌµÈ °æ¿ì´Â ½Ã½ºÆ¾ÀÇ ÇÕ¼ºÀÌ »ó´ëÀûÀ¸·Î Áٱ⠶§¹®¿¡ ÄɶóƾÀÇ ¾çµµ ÀúÇÏÇÏ¿© ¸ð¹ßÀ̳ª ¼ÕÅéÀÌ ¾àÇØÁø´Ù. ±×·¡¼­ ¸ð¹ßÀ̳ª ¼ÕÅéÀÇ ÁúÀ» °³¼±Çϱâ À§ÇØ ½Ã½ºÆ¾À» À½·á³ª ½ÄÇ°À¸·Î¼­ ¼·ÃëÇÏ´Â °Íµµ È¿°úÀûÀÌÁö ¾ÊÀ»±î °ËÅäµÇ°í ÀÖ´Ù. ¶Ç, ½Ã½ºÆ¾À» Äɶóƾ°ú º´¿ëÇؼ­ ¼·ÃëÇÔÀ¸·Î½á Èí¼öÈ¿°ú Çâ»óÀ» ±â´ëÇÒ ¼ö ÀÖ´Ù.

The cysteine thiol group is nucleophilic and easily oxidized. The reactivity is enhanced when the thiol is ionized, and cysteine residues in proteins have pKa values close to neutrality, so are often in their reactive thiolate form in the cell.[9] Because of its high reactivity, the thiol group of cysteine has numerous biological functions.

-  Precursor to the antioxidant glutathione
Due to the ability of thiols to undergo redox reactions, cysteine has antioxidant properties. Cysteine's antioxidant properties are typically expressed in the tripeptide glutathione, which occurs in humans as well as other organisms. The systemic availability of oral glutathione (GSH) is negligible; so it must be biosynthesized from its constituent amino acids, cysteine, glycine, and glutamic acid. Glutamic acid and glycine are readily available in most Western diets, but the availability of cysteine can be the limiting substrate.[citation needed]

-  Disulfide bonds
Disulfide bonds play an important role in the folding and stability of some proteins, usually proteins secreted to the extracellular medium.[10] Since most cellular compartments are reducing environments, disulfide bonds are generally unstable in the cytosol with some exceptions as noted below.
Disulfide bonds in proteins are formed by oxidation of the thiol groups of cysteine residues. The other sulfur-containing amino acid, methionine, cannot form disulfide bonds. More aggressive oxidants convert cysteine to the corresponding sulfinic acid and sulfonic acid. Cysteine residues play a valuable role by crosslinking proteins, which increases the rigidity of proteins and also functions to confer proteolytic resistance (since protein export is a costly process, minimizing its necessity is advantageous). Inside the cell, disulfide bridges between cysteine residues within a polypeptide support the protein's tertiary structure. Insulin is an example of a protein with cystine crosslinking, wherein two separate peptide chains are connected by a pair of disulfide bonds.
Protein disulfide isomerases catalyze the proper formation of disulfide bonds; the cell transfers dehydroascorbic acid to the endoplasmic reticulum, which oxidises the environment. In this environment, cysteines are, in general, oxidized to cystine and are no longer functional as a nucleophiles.

-  Precursor to iron-sulfur clusters
Cysteine is an important source of sulfide in human metabolism. The sulfide in iron-sulfur clusters and in nitrogenase is extracted from cysteine, which is converted to alanine in the process.[11]

-  Metal ion binding
Beyond the iron-sulfur proteins, many other metal cofactors in enzymes are bound to the thiolate substituent of cysteinyl residues. Examples include zinc in zinc fingers and alcohol dehydrogenase, copper in the blue copper proteins, iron in cytochrome P450, and nickel in the [NiFe]-hydrogenases.[12] The thiol group also has a high affinity for heavy metals, so that proteins containing cysteine, such as metallothionein, will bind metals such as mercury, lead, and cadmium tightly.[13]

-  Post-translational modifications
Aside from its oxidation to cystine, cysteine participates in numerous posttranslational modifications. The nucleophilic thiol group allows cysteine to conjugate to other groups, e.g., in prenylation. Ubiquitin ligases transfer ubiquitin to its pendant, proteins, and caspases, which engage in proteolysis in the apoptotic cycle. Inteins often function with the help of a catalytic cysteine. These roles are typically limited to the intracellular milieu, where the environment is reducing, and cysteine is not oxidized to cystine.

-  Applications
Cysteine, mainly the L-enantiomer, is a precursor in the food, pharmaceutical, and personal care industries. One of the largest applications is the production of flavors. For example, the reaction of cysteine with sugars in a Maillard reaction yields meat flavors.[14] L-cysteine is also used as a processing aid for baking.[15]
In the field of personal care, cysteine is used for permanent wave applications predominantly in Asia. Again the cysteine is used for breaking up the disulfide bonds in the hair's keratin.
Cysteine is a very popular target for site-directed labeling experiments to investigate biomolecular structure and dynamics. Maleimides will selectively attach to cysteine using a covalent Michael addition. Site-directed spin labeling for EPR or paramagnetic relaxation enhanced NMR also uses cysteine extensively.
In a 1994 report released by five top cigarette companies, cysteine is one of the 599 additives to cigarettes. Like most cigarette additives, however, its use or purpose is unknown.[16] Its inclusion in cigarettes could offer two benefits: Acting as an expectorant, since smoking increases mucus production in the lungs; and increasing the beneficial antioxidant glutathione (which is diminished in smokers).

-  Sheep
Cysteine is required by sheep in order to produce wool: It is an essential amino acid that must be taken in as food from grass. As a consequence, during drought conditions, sheep stop producing wool; however, transgenic sheep that can make their own cysteine have been developed.[17]

-  Reducing toxic effects of alcohol
Cysteine has been proposed as a preventative or antidote for some of the negative effects of alcohol, including liver damage and hangover. It counteracts the poisonous effects of acetaldehyde, which is the major by-product of alcohol metabolism and is responsible for most of the negative aftereffects and long-term damage associated with alcohol use (but not the immediate effects of drunkenness). Cysteine supports the next step in metabolism, which turns acetaldehyde into the relatively harmless acetic acid. In a rat study, test animals received an LD50 dose of acetaldehyde (the amount that normally kills half of all animals). Those that received cysteine had an 80% survival rate; when both cysteine and thiamine were administered, all animals survived.[18] There is not yet direct evidence for or against its effectiveness in humans who consume alcohol at normal levels.

- N-acetylcysteine (NAC)
N-acetyl-L-cysteine (NAC) is a derivative of cysteine wherein an acetyl group is attached to the nitrogen atom. This compound is sold as a dietary supplement commonly claiming antioxidant and liver-protecting effects. NAC is often used as a cough medicine because it breaks up the disulfide bonds in the mucus and thus liquefies it, making it easier to cough up. It is also this action of breaking disulfide bonds that makes it useful in thinning the abnormally thick mucus in Cystic Fibrosis patients. NAC is also used as a specific antidote in cases of acetaminophen overdose.




 




 






Network  ¡í µÎ³ú, ¸¶À½, ¿å±¸

³úÀÇ ÀÛµ¿¿ø¸®, Áöµµ¿ø¸®

°¨°¢ ±â°ü
º¸»ó½Ã½ºÅÛ
- ÇнÀ ÆÄÆäÃ÷
- ¸ñÀû µ¿±â ºÎ¿© ȸ·Î

½Ä¿å mechanism
- Food Pleasure

file.txt
file.txt