¾ÆÁú»ê N02 ÀÇ ¿ªÇÒ


÷°¡¹° ¡í ¹ß»ö,Ç¥¹é ¡í ¾ÆÁú»ê

¾ÆÁú»ê N02 ÀÇ ¿ªÇÒ

¾ÆÁú»êÀÇ »ý¸®Àû ±â´É
- ½Ä¹° ¹æ¾î±âÀÛÀÇ ½ÅÈ£
- ½Å°æÀü´Þ¹°Áú : ½Å°æÀü´Þ Gas
- Ç÷°ü ÆØâÁ¦ : Ç÷¾Ð°­È­, vasodilator, bronchodilator
- Çù½ÉÁõ Ä¡·áÁ¦, ºñ¾Æ±×¶ó, Á¤·ÂÁ¦
- ħ¿¡¼­ À¯ÇØ±Õ ¾ïÁ¦
- ¾ÆÁú»ê ¾ö¸¶ÀÇ ¼±¹° : ¸é¿ª·Â °­È­
- û»ê°¡¸®(-C¡ÕN)ÀÇ µ¶¼ºÀ» Çص¶ÇÏ´Â ±â´ÉÀ» ÇÑ´Ù
- ä¼ÒÀÇ Áú»ê, ¾ÆÁú»ê ÀÛ¿ë

½ÄÇ°¿¡¼­ ¿ªÇÒ
- Çì¸ð±Û·Îºó »êÈ­(º¯»ö) ¾ïÁ¦
- ½ÄÁßµ¶ ¿¹¹æ : º¸Å彺±Õ ¾ïÁ¦
- dz¹ÌÀÇ ÁõÁø


NO is an important regulator and mediator of numerous processes in the nervous, immune and cardiovascular systems , including smooth muscle relaxation thus resulting in vasodilation of the artery and increasing blood flow, neurotransmission in the nervous system and has been associated with neuronal activity and various functions like avoidance learning, macrophage mediated cytotoxicity for microbes and tumor cells. Besides mediating normal functions, NO has been implicated in pathophysiologic states as diverse as septic shock, hypertension, stroke, and neurodegenerative diseases. [2] Currently, exogenous NO sources constitute a powerful way to supplement NO when the body cannot generate enough for normal biological functions. So, recent developments of novel NO donors, NO releasing devices as well as innovative improvements to current NO donors have been investigated. [3]

¹«±âÁú»ê¿° : °úÀÏ°ú ä¼Ò°¡ ½ÉÇ÷°üÁúȯÀ» ¸·°í ´ç´¢º´À» ¿¹¹æÇÏ´Â ¼ººÐ

3ÀÏ ½º¿þµ§ ij·Ñ¸°½ºÄ«¿¬±¸¼Ò ¿¬±¸ÆÀÀÌ `¼¼Æ÷´ë»çÇÐÀú³Î`¿¡ ¹àÈù ¿¬±¸°á°ú¿¡ ÀÇÇÏ¸é ¼Ò·®ÀÇ ¹«±âÁú»ê¿°À» 3Àϵ¿¾È ¼·ÃëÇÑ ÈÄ °Ç°­ÇÑ »ç¶÷µéÀÌ ÀÚÀü°Å¸¦ Ÿ°Å³ª ¿îµ¿À» ÇÏ´Â µ¿¾È »ê¼Ò¸¦ ´ú ¼Ò¸ðÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ¿¬±¸ÆÀÀº "À̹ø ¿¬±¸°á°ú¸¸À¸·Î ¹«±âÁú»ê¿° º¸ÃæÁ¦¸¦ ¼·ÃëÇÒ ÇÊ¿ä´Â ¾øÀ¸¸ç À̹ø ¿¬±¸¸¦ ÅëÇØ °úÀÏ°ú ä¼Ò ƯÈ÷ ÀÙÀÌ ¸¹Àº ³ì»ö ä¼Ò¸¦ ¼·ÃëÇÏ´Â °ÍÀÌ °Ç°­¿¡ ¿Ö ÁÁÀºÁö¿¡ ´ëÇÑ ¼³¸íÀ» ÇÑ °¡Áö ´õ ÇÒ ¼ö ÀÖ°Ô µÆ´Ù"¶ó°í ¹àÇû´Ù. ¿¬±¸ÆÀÀº "½Ã±ÝÄ¡ ÇÑ Á¢½Ã ȤÀº ºÓÀº ±Ù´ë 2-3°³¿¡ ÇÔÀ¯µÈ Á¤µµÀÇ Áú»ê¿°À» ¼·ÃëÇÏ´Â Á¤µµ¸é ÀÌ °°Àº °Ç°­ÀÇ À̷οòÀ» ¾òÀ» ¼ö ÀÖ´Ù"¶ó°í ¹àÇû´Ù. ¿¬±¸ÆÀÀº "°úÀÏ°ú ä¼Ò°¡ ½ÉÇ÷°üÁúȯÀ» ¸·°í ´ç´¢º´À» ¿¹¹æÇÑ´Ù´Â °ÍÀº ±× µ¿¾È Àß ¾Ë·ÁÁ® ¿ÔÁö¸¸ °ú¿¬ ¾î¶² È°¼º¼ººÐÀÌ ÀÌ °°Àº È¿°ú¸¦ ³»´ÂÁö´Â ºÒÈ®½ÇÇß´ø ¹Ù À̹ø ¿¬±¸°á°ú ¹«±âÁú»ê¿°ÀÌ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â °ÍÀ¸·Î ¹àÇôÁ³´Ù"¶ó°í °­Á¶Çß´Ù.

Induction
Platelet derived factors, shear stress, acetylcholine, and cytokines stimulate the production of NO by endothelial nitric oxide synthase (eNOS). eNOS synthesizes NO from the terminal guanidine-nitrogen of L-arginine and oxygen and yields citrulline as a byproduct. NO production by eNOS is dependent on calcium-calmodulin and other cofactors.

Phosphorylation
NO, a highly reactive free radical, then diffuses into the smooth muscle cells of the blood vessel and interacts with soluble guanylate cyclase. Nitric oxide stimulates the soluble guanylate cyclase to generate the second messenger cyclic GMP (3¡¯,5¡¯ guanosine monophosphate) from guanosine triphosphate (GTP). The soluble cGMP activates cyclic nucleotide dependent protein kinase G (PKG or cGKI). PKG is a kinase that phosphorylates a number of proteins that regulate calcium concentrations, calcium sensitization, hyperpolarize cell through potassium channels, actin filament and myosin dynamic alterations that result in smooth muscle relaxation. (see smooth muscle article).[5]

Neurotransmission
Nitric oxide also serves as a neurotransmitter between nerve cells, part of its general role in redox signaling. Unlike most other neurotransmitters that only transmit information from a presynaptic to a postsynaptic neuron, the small, uncharged, and fat-soluble nitric oxide molecule can diffuse widely and readily enters cells. Thus, it can act on several nearby neurons, even on those not connected by a synapse. At the same time, the short half-life of NO means that such action will be restricted to a limited area, without the necessity for enzymatic breakdown or cellular reuptake. NO is also highly reactive with other free radicals, lipids, and proteins.

NO-cGMP cascade is involved in learning and memory through the maintenance of long-term potentiation (LTP).[6][7]

Nitric oxide is an important non-adrenergic, non-cholinergic (NANC) neurotransmitter in various parts of the gastrointestinal tract. It causes relaxation of the gastrointestinal smooth muscle. In the stomach it increases the capacity of the fundus to store food/fluids.

Dietary nitrate is also an important source of nitric oxide in mammals. Green, leafy vegetables and some root vegetables (such as beetroot) have high concentrations of nitrate. When eaten and absorbed into the bloodstream nitrate is concentrated in saliva (about 10 fold) and is reduced to nitrite on the surface of the tongue by a biofilm of commensal facultative anaerobic bacteria. This nitrite is swallowed and reacts with acid and reducing substances in the stomach (such as ascorbate) to produce high concentrations of nitric oxide. The purpose of this mechanism to create NO is thought to be both sterilization of swallowed food, to prevent food poisoning and to maintain gastric mucosal blood flow. A similar mechanism is thought to protect the skin from fungal infections, where nitrate in sweat is reduced to nitrite by skin commensal organisms and then to NO on the slightly acidic skin surface.

Other functions
Nitric oxide also acts on cardiac muscle to decrease contractility and heart rate. NO contributes to the regulation of cardiac contractility. Emerging evidence suggests that coronary artery disease (CAD) is related to defects in generation or action of NO. [8]
The bacterium Deinococcus radiodurans can withstand extreme levels of radioactivity and other stresses. In 2009 it was reported that nitric oxide plays an important role in the bacteria's recovery from radiation exposure: the gas is required for division and proliferation after DNA damage has been repaired. A gene was described that increases nitric oxide production after UV radiation, and in the absence of this gene the bacteria were still able to repair DNA damage but wouldn't grow.[9]

Pathology
People with diabetes usually have lower levels of Nitric Oxide than patients without diabetes[10]. Diminished supply of Nitric Oxide can lead to vascular damage, such as endothelial dysfunction and vascular inflammation. Vascular damage can lead to decreased blood flow to the extremities, causing the diabetic patient to be more likely to develop Neuropathy, non-healing ulcers, and be at a greater risk for lower limb amputation.

Pharmaceutical analogs
Nitroglycerin, amyl nitrite, "poppers" (isobutyl nitrite or similar) and other nitrite derivatives are used in the treatment of heart disease: The compounds are converted to nitric oxide (by a process that is not completely understood), which in turn dilates the coronary artery (blood vessels around the heart), thereby increasing its blood supply. These drugs, however, are predominantly venodilators, dilating peripheral veins and hence reducing venous return and preload to the heart. This reduces the oxygen requirement of the myocardium and subsequently lessens the anginal pain felt with myocardial ischemia.[11]


¡Ü Nitric Oxide(NO)ÀÇ ¿ªÇÒ

  NO´Â ´ëºÎºÐÀÇ Æ÷À¯·ù µ¿¹°ÀÇ ¼¼Æ÷³»¿¡¼­ »ý¼ºµÇ°í ½Å°æ°è¿¡¼­´Â È­ÇÐÀû ½ÅÈ£ Àü´Þ ¹°Áú·Î¼­, Ç÷°ü°è¿¡¼­´Â Ç÷¾Ð Á¶Àý°ú Ç÷¼ÒÆÇÀÇ ÀÀÁý ¹× È£Áß¼º±¸ÀÇ ÁýÇÕ ÀÛ¿ëÀ»(Feldman µî, 1993; Gally µî, 1990; Moncada µî, 1991; Kubes µî, 1991; Ou µî, 1997), °ñ°Ý±Ù¿¡¼­´Â ´ë»ç¿Í ±Ù ¼öÃà Á¶Àý µî »ý¸®ÇÐÀûÀ¸·Î Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í(Nakane µî, 1993; Kobzik µî, 1994), Ç¥Àû ¼¼Æ÷ ¹× ¼÷ÁÖ ¼¼Æ÷¿¡ ¿©·¯ °¡Áö »ý¸®ÇÐÀûÀÌ¸ç ´ë»ç ÀûÀÎ º¯È­¸¦ À¯µµÇÑ´Ù(Hibbs µî, 1987).
  NOÀÇ »ý¸®ÇÐÀû ¿ªÇÒÀº Ç÷°ü ¹ÝÀÀ¿¡¼­ È°¹ßÈ÷ ¿¬±¸ µÇ¾úÀ¸¸ç(Busse µî, 1990; Nakayama µî, 1992), ÃÖ±Ù¿¡´Â NO°¡ ½Å°æ°èÀÇ »ý¸®ÇÐÀû Àü´ÞÀڷμ­ »Ó¸¸ ¾Æ´Ï¶ó(Gally µî, 1990), ¿°Áõ ¹ÝÀÀ(Boughton-Smith µî, 1993; Lalenti µî, 1993; Middleton µî, 1993; Nozaki µî, 1997; Flynn µî, 1998; Sasaki µî, 1998), ¸é¿ª°è ¹× ¼¼Æ÷ µ¶¼º(Ioannidis¿Í Groot, 1993) ¿Ü¿¡µµ ¼¼Æ÷ÀÇ ºÐÈ­³ª ¼¼Æ÷³» ½ÅÈ£ Àü´Þ µîÀÇ Áß¿äÇÑ Á¶Àý ¹°Áú·Î ¾Ë·ÁÁö°í ÀÖ´Ù. ¶ÇÇÑ NO´Â ÆÐÇ÷Áõ¼º ¼îÅ©, °íÇ÷¾Ð, ¹ßÀÛ ¹× ½Å°æ ÅðÇ༺ Áúȯ µî¿¡¼­µµ ¸¹ÀÌ ¹ß°ßµÈ´Ù(Luss µî, 1996).  ÇÑÆí, ¸é¿ª ¼¼Æ÷¿¡¼­ iNOS¿¡ ÀÇÇØ »ý¼ºµÈ NO´Â ´Ù·®À¸·Î ¿ÜºÎÀÇ Àڱؿ¡ ÀÇÇØ À¯ÀüÀÚ ¼öÁØ¿¡¼­ ¹ßÇöµÇ°í ÁַΠħÀÔÇÑ ¹Ì»ý¹°À̳ª Á¾¾ç ¼¼Æ÷¿¡ ´ëÇØ µ¶¼ºÀ» °®´Â ¹æ¾î ¹°Áú·Î¼­ ÀÛ¿ëÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ´Ù(Keller µî, 1990; Luss µî, 1996; Hierholzer µî, 1998).
  NO´Â ¼¼Æ÷ÀÇ guanylyl cyclaseÀÇ È°¼º ºÎÀ§ ³»ÀÇ Ã¶°ú °áÇÕÇÏ¿© guanosine triphosphate(GTP)·ÎºÎÅÍ cGMP»ý¼ºÀ» ÃËÁøÇϸç(Ignaro µî, 1987; Inoue µî, 1998), NO´Â ¶ÇÇÑ ADP-ribosylation È¿¼ÒÀÎ glyceraldehyde-3-phosphate dehydrogenase¿¡ ¿µÇâÀ» ¹ÌÄ¡°í(Dimmeler µî, 1992), superoxide¿Í ¹ÝÀÀÇÏ¿© peroxynitrite¸¦ Çü¼ºÇÏ¿© ½Å°æ¼¼Æ÷ µ¶¼ºÀ» Á¶ÀýÇÒ ¼ö ÀÖ´Ù(Beckman°ú Koppenol, 1996)(Fig. 3).   ÃÖ±Ù¿¡ NO°¡ ¼¼Æ÷ È°¼ºÈ­ ¹°Áú ¹× reactive oxygen intermediates(ROI)¿¡ ÀÇÇØ À¯¹ßµÈ ¼¼Æ÷ µ¶¼ºÀ» ÃÖ¼ÒÈ­ ½ÃÅ°´Â ¿ªÇÒÀÌ ¹àÇôÁüÀ¸·Î ÀÌ ºÐ¾ß¿¡ ´ëÇؼ­ È°¹ßÈ÷ ¿¬±¸µÇ°í ÀÖ´Ù(Hibbs µî, 1990; Wink µî, 1996; Kr?ncke µî, 1997).

¡Ü °£¿¡¼­ Nitric Oxide(NO)¿Í Superoxide

  °£Àº Ç÷°üÀ» ±¸¼ºÇÏ´Â ³»ÇÇ ¼¼Æ÷, hepatocyte(HC) ¹× ´ë½Ä ¼¼Æ÷ÀÎ Kupffer cell (KC) µîÀ¸·Î ±¸¼ºµÇ¾î ÀÖ´Ù(Fig. 5). ÆÐÇ÷Áõ ¹× ¿°Áõ »óÅ¿¡ ÀÖ´Â °£¿¡´Â ¸¹Àº KC¿Í ¿°Áõ ¼¼Æ÷µéÀÌ ¸ð¿©µé¾î È°¼ºÈ­µÇ°í ÀÎÁ¢ÇÑ HCÀÇ ±â´ÉÀ» Á¶ÀýÇÏ´Â cytokineµéÀ» ºÐºñÇÑ´Ù. KC¿¡¼­ ºÐºñµÈ interleukin-6(IL-6)³ª interleukin-1(IL-1)°ú °°Àº cytokineµéÀº HCÀÇ ±Þ¼º±â ¹ÝÀÀ ¹°Áú ÇÕ¼ºÀ» À¯µµÇÔÀ¸·Î¼­ ¿°Áõ ¹ÝÀÀ¿¡ ÀÇÇؼ­ ¼Õ»óµÈ °£ ±â´ÉÀ» °³¼±ÇÑ´Ù(Geller µî, 1993). ¶ÇÇÑ HC ¹× KC´Â ¼¼Æ÷ È°¼º ¹°ÁúÀÎ tumor necrosis factor-¥á(TNF-¥á), IL-1 ¹× interferon-¥ã(IFN-¥ã) µîÀÇ È¥ÇÕ Ã³¸®¿¡ ÀÇÇؼ­ È°¼ºÈ­µÇ¾î ´Ù·®ÀÇ NO¸¦ »ý¼ºÇÑ´Ù(Harbchet µî, 1994).  NO´Â ºü¸£°Ô »êÈ­µÇ¾î NO 2-/NO3-·Î ÀüȯµÇ¸ç NO¸¦ Æ÷ÇÔÇÑ ±× »êÈ­ ¹°ÁúµéÀ» reactive nitrogen intermediates(RNI)¶ó°í ºÎ¸¥´Ù. ÇÑÆí ¿°Áõ »óÅ¿¡¼­ KC´Â NO ¿Ü¿¡µµ ´Ù·®ÀÇ superoxide¸¦ »ý¼º½ÃÄÑ ¸é¿ª ÀÛ¿ë°ú µ¿½Ã¿¡ ½ÉÇÑ °£ ¼Õ»óÀ» À¯¹ßÇÑ´Ù(Nakazawa µî, 1996; Jourd'heuil µî, 1997). SuperoxideÀÇ »ý¼ºÀº ¼¼Æ÷³» NADP oxidase¿¡ ÀÇÇÏ¿© »ý¼ºµÇ¸ç(Fig. 1.B), ÀÌ superoxide´Â superoxide dismutase(SOD)¿¡ ÀÇÇÏ¿© hydrogen peroxide(H2O2)·Î ÀüȯµÇ°í H2 O2´Â catalase(CAT)¿¡ ÀÇÇؼ­ ¹«ÇØÇÑ H2O·Î µÈ´Ù. ±×·¯³ª, ´Ù·®À¸·Î »ý¼ºµÈ H2O2 ´Â ö ÀÌ¿ÂÀ» Ã˸ŷΠÇÏ¿© hydroxyl radical (.OH)°ú °°Àº µ¶¼º ¹°ÁúÀ» Çü¼ºÇÑ´Ù(Miles µî, 1996). ÀÌ·¯ÇÑ µ¶¼º ¹°ÁúÀ» ROI¶ó°í Çϸç À̵éÀÇ µ¶¼ºÀ» °¨¼Ò½ÃÅ°´Â ¹°ÁúÀÌ antioxidantÀÌ´Ù.

  °£¿¡¼­ »ý¼ºµÈ NO´Â °£ ¼¼Æ÷ÀÇ ÃѴܹéÁú ÇÕ¼º ¹× mitochondrial aconitase activity¸¦ °¨¼Ò½ÃÅ°°í, iNOS ¹ßÇöÀº ±Þ¼º±â ¹ÝÀÀ ¹°Áú·ÎºÎÅÍ Á¶ÀýµÈ´Ù°í ¾Ë·ÁÁ® ÀÖÀ¸¸ç(Geller µî, 1994; Kueose µî, 1996), NO°¡ endotoxinÀ̳ª ¼¼Æ÷ È°¼º ¹°Áú ¹× ROI¿¡ ÀÇÇØ À¯¹ßµÈ ¼¼Æ÷ µ¶¼ºÀ» ÃÖ¼ÒÈ­ ½ÃÅ°´Â ¿ªÇÒÀ» ÇÏ°í ÀÖÀ½ÀÌ ¹àÇôÁüÀ¸·Î ÀÌ ºÐ¾ß¿¡ ´ëÇؼ­ È°¹ßÈ÷ ¿¬±¸µÇ°í ÀÖÀ¸³ª(Billiar µî, 1990; Kr?ncke µî, 1997), NOÀÇ »ý¼º ±âÀüÀº Àß ¾Ë·ÁÁ® ÀÖÁö ¾Ê´Ù.








Network  ¡í µÎ³ú, ¸¶À½, ¿å±¸

³úÀÇ ÀÛµ¿¿ø¸®, Áöµµ¿ø¸®

°¨°¢ ±â°ü
º¸»ó½Ã½ºÅÛ
- ÇнÀ ÆÄÆäÃ÷
- ¸ñÀû µ¿±â ºÎ¿© ȸ·Î

½Ä¿å mechanism
- Food Pleasure

file.txt
file.txt