Login ¡¡ ¢· ¢¹ ¡¡ Mobile II
Hint Food ¸À°úÇâ Diet Health ºÒ·®Áö½Ä ÀÚ¿¬°úÇÐ My Book À¯Æ©ºê Frims ¿ø ·á Á¦ Ç° Update Site

°øÁ¤ ¡í Á¶¸³ ¡í Flavor

Food flavor Interaction

¸À°ú ÇâÀÇ »óÈ£ÀÛ¿ë
- ¸ÀÀÇ »óÈ£ÀÛ¿ë : ¸À¼¼Æ÷ÀÇ »óÈ£ÀÛ¿ë
- ÇâÀÇ »óÈ£ÀÛ¿ë :  TCA ÀÛ¿ëÀÇ ¿ø¸®
- ½ÄÇ°¼ººÐ°ú ÇâÀÇ ¸±¸®Áî ¿µÇâ : Á¦ÇüÈ­(Flavor release control)

°¨°¢ ´Ü°èÀÇ »óÈ£ÀÛ¿ë
- »ç±¸Ã¼¿¡¼­ »óÈ£ÀÛ¿ë
- °¨°¢ ÅëÇÕ : ¾È¿ÍÀüµÎÇÇÁú
- °ø°¨°¢, ³ú°¡¼Ò¼º

- ¿ë¸Å, ÇüÅÂ, »óÅ¿¡ µû¶ó
- Food ingrediet interaction
- Temp ...

Çâ·á´Â »ç¿ëÇÏ´Â ½ÄÇ° ¼ººÐ°ú ´Ù¾çÇÑ »óÈ£ ÀÛ¿ëÀ» ÇÑ´Ù. ÇâÀº Çâ·á ¹°ÁúÀÌ ½ÄÇ°¿¡¼­ ÈÖ¹ßÇÏ¿© ÈÄ°¢ ¼ö¿ëü¿¡ µµ´ÞÇÏ¿©¾ß¸¸ ´À³¥ ¼ö ÀÖ´Ù. µû¶ó¼­ ÇâÀÇ ´À³¦Àº Çâ ÀÚü »Ó ¾Æ´Ï¶ó ÇâÀÌ ºÎÇâµÈ ½ÄÇ°ÀÇ »óÅÂ(½ÄÇ°°ú ÇâÀÇ »óÈ£ÀÛ¿ë) »Ó ¾Æ´Ï¶ó °³ÀÎÀûÀΠƯ¼º, ÀúÀÛÀÛ¿ë µî¿¡ µû¶ó ´Ù¸£°Ô ´À²¸Áø´Ù. Çâ ÀÚü¸¦ Æò°¡ÇÏ´Â °Í ½ÄÇ°¿¡ ºÎÇâµÇ¾î °øÁ¤À» ÅëÇØ ´Ù¾çÇÑ ¼ººÐ°ú °áÇÕµÈ »óÅ´ ū Â÷ÀÌ°¡ ÀÖ´Ù. Á¦Ç° ±×´ë·ÎÀÇ Çâ°ú ½ÄÇ°À» ¸ÔÀ¸¸é¼­ ´À³¢´Â ÇâÀº ¾Ã´Â Á¤µµ, ½Ã°£, ħµîÀÇ ¿µÇâÀ¸·Î ÇâÀÇ release°¡ ´Þ¶óÁö¹Ç·Î Â÷ÀÌ°¡ ÀÖ´Ù. (static condition vs dynamic condition)



A. Áö¹æÀÇ ¿µÇâ
ÇâÀÇ release ´Â ¿ë¸Å°¡ ¹°À̳ª Áö¹æÀ̳Ŀ¡ µû¶ó ´Þ¶óÁø´Ù. Åë»ó ½ÄÇ°¿¡´Â ¾î´À Á¤µµ Áö¹æÀÌ ÀÖ´Ù. ÇÏÁö¸¸ ÃÖÁ¾ÀûÀ¸·Î´Â ¹° ÃþÀ¸·Î À̵¿ÇÑ ÈÄ ÈÖ¹ßÇÏ¿© ÈÄ°¢¿¡ µµ´ÞÇÏ´Â ÆÐÅÏÀ» °¡Áø´Ù. ´ëºÎºÐÀÇ Çâ±â¹°ÁúÀº Áö¿ë¼ºÀ̸鼭 ¾î´À Á¤µµ ¼ö¿ë¼º/Èֹ߼ºÀ» °¡Áö°í ÀÖ´Â ¹°ÁúµéÀÌ´Ù. Flavor ¼ººÐÀº ±âº»ÀûÀ¸·Î Áö¿ë¼º¹°ÁúÀÌ´Ù. µû¶ó¼­ Áö¹æÀÇ ¿µÇâÀ» °¡Àå ½±°Ô ¹Þ´Â´Ù. Áö¹æÀÌ ÀÖÀ¸¸é ÇâÀÌ Áö¹æ ¼Ó¿¡ ³ì¾Æµé¾î°¡ ¿ÀÀÏ ÇÔ·®ÀÌ ¸¹¾ÆÁú¼ö·Ï flavor release´Â õõÈ÷ ÀϾ´Ù. ±×·¯³ª Áö¹æ°ú ÀÛ¿ëÀº Çâ±â ¼ººÐ ÇϳªÇϳª°¡ ´Ù¸£°Ô °áÇÕÇÏ¿© ÇâÁ¶°¡ ´Þ¶óÁö±â º¸´Ù´Â ÀüüÀûÀÎ ÇâÀÇ release°¡ ´Þ¶óÁö´Â Çö»óÀÌ¶ó ¿¹Ãø°ú ´ëÀÀÀÌ ¿ëÀÌÇÏ´Ù. Çâ±â¼ººÐ (2-heptanone)ÀÇ ¸ÅÁú¿¡ µû¸¥ ÇâÀÇ release ÆÐÅÏÀÌ´Ù. Çâ ÀÚü´Â ºü¸£°Ô ´À³¥ ¼ö ÀÖÁö¸¸ ¹°, Å»ÁöºÐÀ¯, ÀüÁöºÐÀ¯, Áö¹æµî ºÎÇâµÈ Á¦Ç°¿¡ µû¶ó õõÈ÷ ¹ßÇöµÈ´Ù. ¹°¿¡ ºÎÇâÇÏ´Â °Í°ú ±â¸§¿¡ ºÎÇâÇÏ´Â °ÍÀº Å« Â÷ÀÌ°¡ ÀÖ´Ù. ¿ì¸®°¡ ÀϹÝÀûÀ¸·Î »ç¿ëÇÏ´Â ÇâÀ» Fat - free Á¦Ç°¿¡ ±×´ë·Î »ç¿ëÇϱâ Èûµç ÀÌÀ¯À̱⵵ ÇÏ´Ù. ¹«Áö¹æ Á¦Ç°Àº Åë»óÀÇ Áö¹æÀÌ ÇÔÀ¯µÈ Á¦Ç°°ú ÀüÇô ´Ù¸¥ ÇâÀÇ release profileÀ» °¡Áö¹Ç·Î ÀÌ°Í¿¡ ´ëÇÑ ¹è·Á°¡ ÇÊ¿äÇÏ´Ù.




¿ÀÀÏ¿¡ ´ëÇÑ flavor release´Â Çâ·á ¼ººÐ¸¶´Ù ¾à°£ Â÷ÀÌ°¡ ÀÖ´Ù. ±×·¯³ª ´Ù¸¥ ¼ººÐ¿¡ ºñÇؼ­´Â Å« °ÍÀÌ ¾Æ´Ï´Ù. Áö¹æÀÌ ¸¹À»¼ö·Ï ÇâÀÇ release¾çÀÌ °¨¼ÒÇϹǷΠÇâÀÇ »ç¿ë·®À» Àû´çÈ÷ ³ô¿© ÁÖ¿©¾ß ÇÑ´Ù.  



B. ź¼öÈ­¹°°ú ÀÛ¿ë
- ´Ü¼ø´ç : ´Ü´ç·ù ÀÌ´ç·ù´Â Çâ·á¿Í Å©°Ô ÀÛ¿ëÇÏÁö ¾Ê´Â´Ù. flavor releaseº¸´Ù´Â °¨¹Ì°¡ ÇâÀÇ ÀÎÁö ÀÛ¿ë°úÀÇ °ü°è°¡ ÀÇ¹Ì ÀÖ´Ù. ´ëü·Î °¨¹ÌÀÇ »ó½ÂÀº ÇâÀÇ ÀνĿ¡ µµ¿òÀ» ÁØ´Ù. ´ÞÁö ¾ÊÀ¸¸é °úÀÏÀÌ ¸ÀÀÌ ¾ø´Â ÁÖÀÌÀ¯´Ù.  
- °í°¨¹Ì °¨¹ÌÁ¦¿Í ÀÛ¿ë
°í°¨¹Ì °¨¹ÌÁ¦´Â ÇâÀÇ release¿¡ ¿µÇâÀ» ÁØ´Ù. ÇÏÁö¸¸ ÇâÀÇ release º¸´Ù´Â °¨¹Ì·á ÀÚüÀÇ ¾ÈÁ¤¼ºµµ Áß¿äÇÏ´Ù. °í°¨¹Ì °¨¹ÌÁ¦ÀÇ ¾ÈÁ¤¼ºÀÌ ¶³¾îÁö¸é Á¦Ç°ÀÇ ÀüüÀû °¨¹Ì°¡ ´Þ¶óÁö°í Çâ¹Ì¸¦ ´À³¢´Â °Íµµ ´Þ¸®Áö°Ô µÈ´Ù.
¾Æ½ºÆÄŽÀ» »ç¿ëÇÒ ¶§´Â ƯÈ÷ ÁÖÀÇÇØ¾ß ÇÑ´Ù. ¾Æ½ºÆÄŽÀº 2°³ÀÇ ¾Æ¹Ì³ë»êÀ¸·Î ±¸¼ºµÇ¾î ºÐÇصDZ⠽±´Ù. ´õ±¸³ª ¾Ëµ¥È÷µå·ù¸¦ ¸¸³ª¸é ÀÌ°Í°ú °áÇÕÇÏ¿© ¾Æ½ºÆÄŽÀÇ È°¼ºÀÌ Å©°Ô ¶³¾îÁú ¼ö ÀÖ´Ù. ¾Æ½ºÆÄŽÀº °í°¨¹Ì °¨¹ÌÁ¦·Î ºÐÇØµÉ °æ¿ì °¨¹Ì ¼Õ½ÇÀÌ Å©´Ù.  


- ÀüºÐ°úÀÇ ÀÛ¿ë
ÀüºÐÀº Á¦Ç°ÀÇ ¹°¼º(Á¡µµ, °ÖÈ­)¿¡ ¿µÇâÀ» ÁØ´Ù. µû¶ó¼­ flavor release¿¡ ¿µÇâÀ» ÁØ´Ù. Á¡µµ°¡ ³ô¾ÆÁö¸é Çâ·á°¡ Á¦Ç°¿¡¼­ ÈÖ¹ßÇÏ¿© ÈÄ°¢ ¼ö¿ëü¿¡ µµ´ÞÇÏ´Â ½Ã°£ÀÌ Áö¿¬µÈ´Ù. ÀüºÐÀº Æ÷µµ´ç »óź¸´Ù Ä£¼ö¼ºÀÌ Àû¾îÁø »óÅ·ΠÇâÀÌ Æ÷ÁýµÉ ¿©Áö°¡ Ä¿Áø »óÅ´Ù. ƯÈ÷ helix ±¸Á¶ ³»ºÎ¿¡ ÇâÀÌ Æ÷ÁýµÉ ¿©Áö´Â ÃæºÐÇÏ´Ù. »çÀÌŬ·Îµ¦½ºÆ®¸°ÀÌ ´ëÆ÷ÀûÀÎ Æ÷ÁýÇü ±¸Á¶¸ç À̺¸´Ù´Â ÀûÁö¸¸ ÀÏ¹Ý ÀüºÐµµ ÃæºÐÈ÷ ÇâÀ» Æ÷ÁýÇÒ ¼ö ÀÖ´Ù. ƯÈ÷ ´Ù¾çÇÑ º¯¼ºÀüºÐÀº ġȯµÈ ÀÛ¿ë±â¿¡ µû¶ó ÀÌ·± ±â´ÉÀÌ ³ô¾ÆÁø °Íµµ °¡´ÉÇÏ´Ù.(ºÐ¸»Çâ·á ÄÚÆÃÁ¦)  

- °ÖÈ­Á¦(°Ö°­µµ) µû¸¥ Flavor release
°ÖÈ­Á¦´Â Á¦Ç°ÀÇ Á¶Á÷À» ´Ü´ÜÇÏ°Ô ÇÏ¿© mass transfer¸¦ ³·Ãá´Ù. ÇâÀÇ ÇÁ·ÎÆÄÀÏ º¯°æº¸´Ù´Â ¹°¸®ÀûÀÎ ¾ïÁ¦¸¦ ÇÔÀ¸·Î ÇâÀÇ »ç¿ë·®À» ´Ã·Á¼­ ÇØ°áÇØ¾ß ÇÑ´Ù.





C. ´Ü¹éÁú°ú ÀÛ¿ë

¼ÒºñÀÚ Æ®·»µå°¡ ź¼öÈ­¹°°ú Áö¹æ¿¡ ºÎÁ¤ÀûÀÌ°í ´Ü¹éÁú¿¡ ¿ìÈ£ÀûÀ̶ó ½Ä¹°¼º ´Ü¹éÁú(Äá´Ü¹é)À» °­È­ÇÑ ½ÄÇ°ÀÇ °³¹ßÀÌ trend¸¦ ÀÌ·ç´Âµ¥ flavoringÀº ½±Áö ¾Ê´Ù. ±×·¯³ª ´Ü¹éÁúÀº ź¼öÈ­¹°°ú ´Þ¸® ´Ù¾çÇÑ °áÇÕ»çÀÌÆ®°¡ À־ ÈξÀ º¹ÀâÇÏ´Ù. Ä£¼ö¼º, ¼Ò¼ö¼º, ±Ø¼º°áÇÕÀÌ ¸ðµÎ °¡´ÉÇÏ´Ù. µû¶ó¼­ ±¸¼º ¾Æ¹Ì³ë»êÀÇ Á¶¼º¿¡ µû¶ó ¾àÇÑ °áÇÕ ~ ¸Å¿ì °­ÇÑ °áÇÕÀÌ ÀÌ·ç¾îÁø´Ù. ¶ÇÇÑ ´Ü¹éÁúÀº ÀÔüÀû ±¸Á¶°¡ ´Ù¾çÇÏ°í pH, ¿°³óµµ, °¡¿­Á¶°Ç¿¡ µû¶ó ¹°¸®Àû »óÅ°¡ º¯ÇϹǷΠÇâ°úÀÇ interactionÀ» ¿¹ÃøÇϱâ Èûµé´Ù
-OH, -NH2, -SH ÀÛ¿ë±â¿Í °áÇÕÇÏ¸é ´Ü´ÜÇÑ °áÇÕÀ» Çü¼ºÇϹǷΠ°áÁ¤ÀûÀ¸·Î release°¡ º¯ÇÏ°Ô µÈ´Ù. ´Ü¹éÁú Á¾·ù·Î º¸¸é Äá´Ü¹é > Á©¶óƾ > ³­´Ü¹é > À¯´Ü¹é ¼øÀ¸·Î °­ÇÑ °áÇÕÀ» ÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ³´Ù. µû¶ó¼­ Äá´Ü¹é Á¦Ç°ÀÇ ºÎÇâÀÌ °¡Àå ³­ÇØÇÏ´Ù. pH¿¡ µû¶ó ´Ü¹éÁúÀÇ ±¸Á¶´Â Å©°Ô º¯ÇÑ´Ù. Çâ¿¡µµ ¿µÇâÀ» ¹ÌÄ¡´Âµ¥ Çâ·á ¹°Áúº°·Î ´Ù¸£°Ô ¿µÇâÀ» ¹Þ´Â´Ù. °¡¿­¿¡ ÀÇÇØ ´Ü¹éÁúÀÌ º¯¼ºµÇ¸é ´ëü·Î ÇâÀÌ °áÇÕÇϱ⠽¬¿î ±¸Á¶°¡ µÈ´Ù. ź¼öÈ­¹°(ÁõÁ¡Á¦) ¸øÁö¾Ê°Ô ´Ü¹éÁúµµ Á¦Ç°ÀÇ ¹°¼º¿¡ Å©°Ô ¿µÇâÀ» Áִµ¥ ¹°¼ºÀÇ º¯È­´Â ¹Ì°¢°ú ÇâÀ» ´À³¢´Âµ¥ ¿µÇâÀ» ÁØ´Ù. ´Ü¹éÁú ºÐÇع°Àº ºÐÀÚ·®ÀÌ Àû¾î¼­ ¹°¼º¿¡´Â ¿µÇâÀÌ ÀûÁö¸¸ ¾Æ¹Ì³ë»êÀÇ ¾Æ¹Ì³ë±â¿Í Ä«º¸´Ò±â°¡ ¸¹ÀÌ ³ëÃâµÇ°Ô µÈ´Ù. ÀÌµé ´Ü¸»°ú Çâ°úÀÇ ÀÛ¿ëÀº Áõ°¡ÇÑ´Ù.  





Ä¿ÇÇ Melanoidin ½ÇÇè
Ä¿ÇÇ´Â ÃßÃâÇÑ »óÅÂ¿Í ½Ã°£ÀÌ Áö³­ »óÅÂ¿Í Â÷ÀÌ°¡ ½ÉÇѵ¥ ÀÌ°ÍÀº ¹Ì·®ÀÇ sulfuryl ¹°Áú¿¡ ±âÀÎÇÑ´Ù. ¿¹¸¦ µé¾î furfuryl mercaptanÀº melanoidinÀÌ Á¸ÀçÇÏ¸é º¸°üÇÑÁö 20ºÐ¸¸ Áö³ªµµ 50%°¡ ¼Õ½ÇµÈ´Ù.
pH ¿µÇâ : »ê¼º¿¡¼­ ´ëºÎºÐ ¿ëÇصµ°¡ ³·¾ÆÁø´Ù. ´Ü¹éÁúÀº µîÀüÁ¡¿¡¼­ ÃÖ¼ÒÈ­µÈ´Ù. Çâ±â¹°Áúµµ ¿ëÇصµ°¡ ³·¾Æ¼­ Èֹ߼ºÀÌ Áõ°¡ÇÏ´Â °ÍÀÌ ¸¹´Ù. ±×·¯³ª amineÀ̳ª Pyrazine°°ÀÌ Áú¼Ò¸¦ ÇÔÀ¯ÇÏ´Â ¿°±â¼º ¹°ÁúÀº ¿ëÇصµ°¡ ³ô¾ÆÁö°í Èֹ߼ºÀÌ °¨¼ÒÇÑ´Ù.


ÃÊÄÝ·¿¿¡¼­ Áö¹æÀÇ È¿°ú

 


 


Odor-Induced  Flavor  Enhancement
The aromas of food products are derived from a variety of volatile aroma substances, most of which have no or little nutritional value and possess poor thermostability. Food aroma and taste play important roles in appetite control: aroma and taste alone or in combination can influence appetite sensation and food intake. Aromas also indirectly improve the digestion and absorption of nutriments. The perception of aroma is more sensitive and complex than taste perception. Aroma perception is highly correlated with the molecular structure of aroma and takes effect even at a very low concentration (i.e. 1–1000 ppm). The threshold values and concentrations of aroma substances are important parameters that determine the ultimate effect of aroma.
Certain tasteless substances (especially volatiles) could also influence taste perception. Aroma is well-known for its considerable contribution to the perception of taste even in trace amount. The ¡°odor-induced changes in taste perception¡± phenomenon have been examined in quite a few studies. However, minimal efforts have been made in examining odor-induced taste peptide enhancement.
Specific odor-induced influences take place in the perception of salt taste. Sodium salt is a commonly used condiment, which is indispensable for the human body. However, excessive consumption of sodium salt may lead to a number of diseases such as hyper- tension, cardiovascular disease, kidney disease and other serious diseases. High intake of sodium salt would affect the disease resis- tance of human cells and aggravate the burden of kidneys. It is of high importance to explore solutions to reduce the amount of sodium salt in foods without compromising food taste. Utilizing the interactions between odor and taste substances represents a feasible approach for reducing the intake of sodium salt. The enhancement of saltiness is related to the consistency of odor and the concentration of salt in aqueous solutions or solid foods. Research showed that the intensity of perceived salty taste was significantly increased by the sardine aroma when the salt concentration was at a low- or medium-level, but no significant change in salty taste was found at high salt concentrations (Nasri et al., 2011). Similarly, specified odors may induce enhancement of salt- iness in low salt solutions, suggesting an approach through which the amount of sodium chloride in food can be reduced without losing any intensity of salty taste (Lawrence et al., 2009). Nasri et al. (2013) found that the effect of odor-taste interactions on potas- sium chloride was stronger than on sodium chloride. Accordingly, odor-sour-salty ternary systems may allow a desirable flavor improvement based on the same mechanism as that for odor-induced taste enhancement in real food systems. In solid cheese models, comté cheese and sardine odors were found to play a significant role in the enhancement of saltiness of either flavored or unflavored cheese (Lawrence et al., 2011). Syarifuddin et al. (2016) also indicated that odors could compensate for taste insuf- ficiency in low-salt, low-sugar and low-oil cheese model through cross-modal interactions. Emorine et al. (2015) reported that the effect of ham odor-induced saltiness enhancement was independent of salt and aroma diffusion. It is known that the ham with an uneven salt distribution was saltier (P < 0.01) than that with homogeneous salt distribution, but the unevenly distributed ham odor could affect neither the perception of taste nor the perception of odor. Djordjevic et al. (2004) confirmed that soy sauce odor- induced saltiness enhancement and strawberry odor-induced sweetness enhancement were centrally mediated and also resulted from taste-smell interactions.
The well-selected odor, even at a subthreshold level, can markedly enhance the perception of taste. The effect of sweet-congruent odor on sweetness perception was detected by Labbe and Morgenegg (2007) using a continuous flow system with a constant sucrose concentration but different odor concentrations. The authors indicated that at a supra-threshold level, ethyl butyrate and maltol would have the highest and lowest sweetening properties, respectively. At a subthreshold level, ethyl butyrate could significantly enhance the sweetness of the sucrose solution, whilst maltol did not, probably due to the different odorant-tastant associations and respective sensitivity. The concentration of ethyl butyrate is not in direct proportion to the enhancement of sweetness at a subthreshold level, but an opposite trend was detected at a supra-threshold level. The odor-induced sweetness enhancement is correlated with the concentration of a sweet substance. Symoneaux et al. (2015) confirmed that enhancement of cider¡¯s sweetness would occur when the sugar content was in the range of 35–40 g L1.
Caporale et al. (2004) found that the presence of cut grass odor was beneficial for inducing a higher intensity of bitterness and longer duration in virgin olive oil even when diverse stimuli were upheld. Mccabe and Rolls (2007) observed that a higher intensity of pleasant flavor was achieved if vegetable aroma was combined with sodium glutamate. Moreover, integration of vegetable aroma and sodium glutamate was found to facilitate a greater stimulation of the medial orbitofrontal cortex and pregenual cingulate cortex than the sum of respective stimulation provided by vegetable aroma or sodium glutamate, as revealed by functional magnetic resonance imaging. Niimi et al. (2014) found that at the low- and middle-aroma concentrations, cheese flavor was increased with the concentration of monosodium glutamate, but decreased in the system with aroma at a high concentration. Cheese aroma could significantly enhance the perception of umami and bitterness, but had no effect on the intensity of sweetness, saltiness or sourness. Therefore, the perceptible interaction between taste and aroma of cheese was influenced by the type of taste and the concentration of aroma. The same type of odor-induced flavor enhancement may lead to totally different results in varied food systems. In a cocoa beverage, cocoa and vanilla odors would induce enhancement on bitterness and sweetness, respectively. But surprisingly, vanilla odor did not enhance sweetness, on the contrary, enhanced the bitterness of caffeinated milk (Labbe et al., 2006).
Odor-induced changes in taste perception was mediated centrally (Caporale et al., 2004), and correlated with chemical reactions and physical interactions between taste and odor components as well as their subsequent interactions with taste receptors (Sun- Waterhouse and Wadhwa, 2013). Based on the obtained psychophysical and neuroanatomical results, the cerebral cortex activity of the coordinated odor-taste combination was extremely higher than that of the incongruent integration, involving insula, frontal operculum, anterior cingulate cortex, and orbitofrontal cortex (Seo et al., 2013). Flavor perception results from the central integra- tion, which depends on the previous experience with congruent taste-odor integration. Dynamic stability of taste attractors in gusta- tory cortical was regulated by feedback signals from orbitofrontal cortex to gustatory cortical, resulting in an enhancement or inhibition of taste perception caused by certain aroma (Shimemura et al., 2016). Another reason for such odor-induced taste enhancement could be the cognitive link between the taste and aroma features. Aromas may possess certain taste attributes. For example, vanilla odor tends to be associated with sweet perception, whilst sardines odor is likely related to salty perception (Lim et al., 2014). Thus, the congruency of taste and odor in taste-odor interaction is especially important (Small and Prescott, 2005). Lawrence et al (2011) reported that the carrot odor, which was not related to saltiness, did not enhance saltiness (Lawrence et al., 2011). When studies are carried out on such odor-induced taste enhancement, one should pay attention to a ¡®¡®dumping¡¯¡¯ effect (the taste rating is extended in the absence of related attributes e.g. the perceived olfactory enhancement on the taste scale was eval- uated with no olfactory intensity scale available) (Lim et al., 2014). In these cases, reaction deviation should be considered and included.


ÆäÀ̽ººÏ       ¹æ¸í·Ï      ¼öÁ¤ 2022-04-10 / µî·Ï 2012-01-16 / Á¶È¸ : 20261 (737)



¿ì¸®ÀÇ °Ç°­À» ÇØÄ¡´Â ºÒ·®Áö½ÄÀÌ ¾ø´Â ¾Æ¸§´Ù¿î ¼¼»óÀ» ²Þ²Ù¸ç ...  2009.12  ÃÖ³«¾ð


¡¡